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ABSTRACT 

Perturbations of solutions of nonhnear equations often are approximated well by 
eigenfunctions of a linear equation. This suggests the use of truncated eigenexpansions 
in numerical approximation. This paper describes the successful application of this 
idea to the numerical approximation of Taylor vortices. These appear as a secondary 
flow in a viscous, incompressible fluid between concentric, circular rotating cyhnders. 
The expansions used are Fourier expansions of the velocity components with respect 
to the axial dimension. Comparison with analytic and experimental data, as well as 
mesh refinements and extension of the number of Fourier components retained, indicate 
a considerable accuracy with very modest computer storage requirements. 

1. INTRODUCTION 

Computable approximations for differential equations usually take the form of 
finite difference equations. Generally, difference a~pro~m~tious are truncated 
asymptotic expansions in one or more mesh parameters. This suggests the possibility 
of achieving other computable approximations by truncation of other asy 
expansions. Indeed series solutions of ordinary differential equations about regu 
and regular-singular points fit this description; the determ~~at~ou of their toe 
cients is a purely algebraic matter (they are “computable”). 

A far less trivial example from hydrodynamic stability is the principal subject of 
this paper. It is a problem in a broad class fitting the following pattern. Suppose 
the differential equation Z;(t) = A&t, u(t)) is descriptive of the behavior of a one 
parameter (l 2 0) family of functions 24 (in one or more unprinted spatial var~abl~s)~ 
where AT is a transformation dependent upon a real quantity T, as well as t and 
u(t). Suppose further that AT(t, 0) = 0 for all E and T and for some real TC ) 
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2 ROGERS AND BEARD 

T < Tc implies u(t) = 0 is asymptotically stable, yet T > Tc implies u(t) = 0 is 
unstable. (Should the stability in question be that of some solution u(t) f 0, then 
we may recast the equation as G(t) = Br(t, w(t)) = ---i)(t) + Ar(t, w(t) + u(t)) 
and examine the solution w(t) = 0.) When T > Tc , solutions initially near the zero 
solution might be sought as asymptotic expansions u(t) = 0 + eul(t) + E”u~(~) + a** 
in E = O((T - T,)“) for some 01 > 0. This leads to a system of equations of the 
general form 

z&(t) = A$yt, ul(t) )...) u,(t) )... ), k = 1, 2,... . 

The neglect of u~+~ , u~+$ ,... requires of us the solution of N equations of this type. 
While the resultant system may be more formidable than the original equation, 

it is not necessarily so. When the asymptotic expansion is simultaneously an eigen- 
function expansion, we may be spared the need to deal with certain spatial variables. 

II. TAYLOR VORTICES 

This paper reports on the flow of a viscous, incompressible fluid between infinite, 
concentric, circular cylinders rotating at fixed speeds about their common axis. 
Such flow has been demonstrated both experimentally and theoretically to undergo 
qualitative changes as, say, the speed of rotation of the inner cylinder is increased 
from zero with the outer cylinder at rest. The first change is from a laminar (Couette) 
flow to an axi-symmetric pattern of toroidal vortices (Taylor vortices) stacked 
one upon another. This transition has been closely studied (see Chandrasekhar 
[2] and DiPrima [6] for surveys), A second flow transition to a wavy vortex flow at 
a higher speed has become the subject of study more recently (see Coles [3] and 
Davey, DiPrima and Stuart [S]). 

The steady Couette flow is unmarred by any vortex motion for values of the 
dimensionless Taylor number T (based on the speed of the inner cylinder, see 
equation (4)) below a particular critical value Tc . For T > Tc and T - Tc small, 
asymptotic analyses have shown that the amplitude of the vortex motion is propor- 
tional to (T - T,)1/2. In as much as the steady Navier-Stokes equations admit 
Couette flow as a solution for all T, at T = Tc a bifurcation occurs in the solutions 
of these equations. Thus nonsteady flow which tends to a steady state has a choice 
which is governed by the relative stabilities of Couette flow and vortex flow. 

In fact the analytic picture has further relevant detail. Linearization of the equa- 
tions for a perturbation of Couette flow has led to a boundary-value problem whose 
solutions are periodic in the axial coordinate z with wave number h. The time 
dependence of these solutions is exponential exp(at) where u = o(T, A) is a function 
of Taylor number T and wave number h. Thus marginally stable solutions 
(Re o(T, X) = 0) occur at various critical T’s for various h. We will denote these 
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T’s by T&) which obeys Re a(T,(h), A) = e The T, referred to previously is k 
minimum of these and occurs for a unique critical wave number A, . This is shown 
gra~~~~a~~y in Fig. 1. 

FIG. 2. The curve of marginal stability separating the A, T plane into regions co~esp~n~~~~ 
to growing and decaying harmonic disturbances of Couette flow according to stability analysis 
of the linearized equations. 

The instability of Couette flow for T > Tc is well-known. Not so we~~-~ow~ are 
the amplitudes and shapes of the vortex motions which are stable. Extensive ana- 
lyses (Davey [4], Di Prima 171, GGrtler and Velte [LO]) have produced asy 
estimates of both the amplitudes and shapes for T - Te positive and sm 
asymptotic information is currently available only through experiment 
numerical study. This paper reports a numerical study of Taylor vortice 
fixed cylinder whose radius is twice that of the rotating inner cylinder. 
“wide-gap” situation has been chosen because experi has shown the sta 
of the vortex flow for a significant range of T above . e ~orn~~tat~o~s repor 
here are for T in the range Tc -=c T < 5Tc , 

Numerical work has been done by Krilov and roizvolova ELI], C 
Ghelardoni and Lombardi [l] and Meyer 1121 to ap 
Their studies are based on approximation of the Navier-Stokes equati 
differences in the radial, axial and time coordinates (for a fuller discu 
DiPrima and Rogers [8]). The approach used here eliminates axial diffe 
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expanding the dependent variables in truncated Fourier series. The resulting 
system of differential equations for the Fourier amplitudes is differenced for 
numerical solution. 

The use of Fourier expansions is suggested by physical evidence of axial 
periodicity and by analytical studies of the problem. However, here as in those 
studies the Fourier expansion imposes a particular axial wavelength 2n/h upon 
the calculation. Figure 1 shows that each h has its own critical Taylor number 
T,@) and when T > Tc there is a band of values X for which Re o(T, A) > 0. 
Physical flows do not have a particular h imposed and the mechanism which 
selects observed wavelengths is not fully understood. The numerical procedure we 
have selected does permit a direct attack on this wavelength selection problem 
(see [S]). However, the calculations which we report were carried out with the wave- 
length 2?~/h fixed as that which Davey [4] reports as the critical wavelength 277/h,. 

Calculations of torque per unit length on the inner cylinder agree very well with 
the asymptotic estimates of Davey [4] for T near Tc , while for T farther above Tc 
our torques exceed Davey’s and those obtained experimentally by Donnelly and 
Simon [9] as well. However, the torques never differ by more than 3 % of the 
Donnelly and Simon data. Harmonics of the rate of strain at the inner cylinder are 
calculated and compared with those predicted by Davey’s work and experimental 
data of Snyder and Lambert [13]. 

In his numerical study Meyer [12] observed the development, with increasing T, 
of a circumferential shear layer at the vortex faces where the radial flow is outward. 
He has suggested this as a principal precursor of the transition from ax&symmetric 
to non-axi-symmetric vortex flow. A related feature would appear to be the growth 
of a radial jet at the same interfaces noted by Snyder and Lambert [13]. We 
present corroborating evidence of these developments. 

Additional phenomena for which this numerical treatment may prove profitable 
include thermal convection (the Benard problem), flame instability, freezing of 
liquid metals and elastic buckling. 

III. ANALYSIS AND DISCRETIZATION OF FLOW EQUATIONS 

Let r, 0, z represent cylindrical coordinates, co-axial with the cylinders and let 
24 U, , U, represent the velocity components of the fluid. Cylinders of radii RI and 
is’of infinite length bound the fluid (RI < R,) and rotate at angular speeds Q1 , 
fin, , respectively. We let 24: , ui , z.& , p’ denote perturbations of the velocity and 
pressure fields from their values in Couette flow. Thus 

24, = 24; ) Ue = V(r) + u; , 2.4, = 24; and p = p’ + f p T dr (1) 
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where V(P) = Ar + Br-l and p is the density of the viscous, 
The constants A and B are determined by the boundary con 

and uO = R&2, at r = Rz . 
e nondimensionalize our variables via the transformations from Y, 6, z ko x, ~9~ 5 

and B: ) u; , u; ) p’ to u, v, w, p given by 

r = R, + xd, z = Cd, 

u: = (--v/old) u, u; = R,Q&, u: = (--v/ad) w, 

p’ = (-v2/ad2) p: 

(2) 

where 

& = W, + &A d = R, - R, , Y is the kinematic viscosity, 

6 = d/R,, , Q, = 6Wl + QA a = --2A6/B,. 
$39 

As additional conveniences we define 

and the Taylor number T = -4AB, d4/v2. 
We write the Navier-Stokes equations of incompressible viscous flow an 

the variables and constants (l), (3) and (4) and transformations (2). Now we ’ 
axi-symmetry (no dependence on 0) and eliminate p from the first an 
momentum equations. Finally, we consider only motions which are Foutier- 
expandable in 5 for all time: 

u = f uq(r, t> c~~(qXd, 
q=l 

w = f w,(r, t) sin(qXIJ. 

In this assumption we are fortunate that in the steady limit the qth Fourier coef- 
ficients can be shown to be O((T - TC)[~~-11+~J~2) as T+ Tc+. The use of cosine 
series for u reflects our freedom to choose the location of { = CI wherever it suits 
us in the flow. Having made this choice, we are forced by the continuity e 
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to write w in a sine series and by the momentum equations to write v in a cosine 
series. When amplitudes of like harmonic components are equated, an infinite 
system of partial differential equations for the U&Y, t), II,&, t), IV&-, t), and vO(r, t) 
results. Use of the expressions for IV,&, t) obtained from the continuity equation to 
eliminate the w,‘s from all other equations leaves the system 

(6) 

4 (DD” - q2h2) u, - (DD* - g2x2)2 u, - q2h2Tsz,(x) v, 

= U&o , UI , ~1 , ~2 , 02 ,-; k T, E, 01, 8, (7) 

&-(DD*- q2X2) v, + u, 

= V&A,, ~1, ~1, ~2, 02 3.4.; A T, t, 01, 8) C-9 

for 4 = 1,2,... . Here D = a/ax, D* = D + s(x) and U, and V, represent qua- 
dratic terms in the u’s and 2r’s (see the appendix). Except for a slight variation in 
scaling, this is the system of equations derived by DiPrima in [7]. 

Computation restricts us to a finite subsystem of these equations. The series in 
the expressions for U, and V, are simply terminated by choosing 0 = tiQfl = 
%+1 = %+2 = Vgt2 = a** and restricting 9 in Eqs. (7) and (8) to 1 < 4 < Q. 
This is the promised truncation of asymptotic expansions. The resulting system 
may be given the form 

; (PU) = MU + NU + S(u), (9) 

where U = (v. , u, , v, ,..., uo , vo)=, P is a diagonal (2Q + 1) x (2Q + 1) 
matrix of operator elements 

1 
‘ii = DD* _ k2&’ I 

for i = 0 and 2k + 1 
for i = 2k, 

k = 1, 2,..., Q, A4 is a diagonal matrix of operator elements 

Mii = i 
DD* - k2hZ for i = 2k + 1 (including k = 0) 
(DD” - k2h2)2 for i = 2k, 

k = 1,2 ,..., Q, and Nis a matrix of zeros but for 

.- -1 
$t+: : k2h2T&.(x) 

for i = 2k 
for i = 2k, 
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The differencing of these equations is achieved by application of ~~~ear~~y an 
chain rule until D, P, D”, D4 apply only to a single unknown dependent va 
and then replacement of these derivatives by difference ratios of a “‘simple-een 
variety (these are defined in the Appendix). For instance, E 

for j = 1, I&..., J - 1 and n = 0, 1,2,... and in which O<y<l, 
dx = l/J, ej = 6(--i + jAx) and Fjn is an intended approxim 
F(-8 + jAx, ndt) for F = uo, uk, vk . Similar procedures lead to di~ere~~e- 
equation approximations of Eqs. (7) and (8). These are accompanied by boundary 
conditions reflecting u = v = w = 0 on the cylinders (X = &$) or equ~va~e~t~y 
v. = ug = vq = Du, = Ofor q = 1, 2,... . These boundary conditions are 

gj ZY u;? = &$ = f,& - u&1 = 

for j = 0 and J and n = 0, 1,2 ,... . 
In analogy with Eq. (9), these difference equations including boundary con 

may be put sn the form 

At-l~(~~~~+l - (PU)jn] = &J)~+’ f (1 - ~)~~~)~~ i- NBT,” + una 

for j = I,..., J - 1 where p, & are consistent difference approximations of the 
operators P, M and $“(IJ) is a difference formulation of S 

The parameter y allows variation of the extent of ~rn~l~c~t~ess b 
difference equations. A stability analysis of the linearized equation ( 
numerical stability for all At > 0 when $, < 91 < I. 

The reader may observe that Eqs. (6)-(g) are invariant under the &ange of 
dependent variables (- l>” U, for U, and (- l)a v, for v, . This property carries over 
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to the difference equations and accounts for shifts of m/h in the 5 direction which 
were observed in the computer output of the velocity fields (outward flow u > 0 
appeared at both 5 = 0 and 5 = v/h in various computations). The shift is appa- 
rently determined by the flow pattern with which a computation is started. All 
output has been normalized so that the radial velocity u is positive at 5 = 0, 
x = 0. 

IV. NUMERICAL TECHNIQUE; SELECTION OF PARAMETERS 

Each component of U is a function of x and t. In the difference formulation each 
component is represented by J + 1 numbers at each time level. Boundary condi- 
tions determine two of these so that (11) represents (J - 1)(2Q + 1) equations in 
an equal number of scalars approximating U n+l. These equations are implicit for 
all CJJ because of the differencing demanded by p. However, we are saved from an 
imposing task of solution by the diagonal character of the operators P and M. As 
a result, the difference equation systems for v0 , u, , v, may be solved one at a time. 

The difference schemes for the operator DD* in A4 causes the system of 
equations for the vo”j’“( R&--~]L + j/J, (n + 1) At)) and the systems for the 
v~~~~(M~~(-& + j/J, (n + 1) Lit)) to be tridiagonal while the systems for the z&+“j’” 
are pentadiagonal because of the (DD* - g2h2)2 in M. This simplicity and the 
time independence of P and M makes the factorization of the coefficient matrices 
of the (v::~,..., z@JT, (,zi+l,..., $$hT and (van:;” ,..., v::?~)~ into triangular factors 
attractive. It can be accomplished quickly and has to be done just once. Solution 
of 2Q + 1 triangular (J - 1) x (J - 1) systems of equations is performed at each 
time step for each dependent variable. 

Since the convergence to steady state is expected to be an imitation of that 
which occurs physically, the speed of such convergence is expected to be greater 
with greater d t. However, experience with this scheme has shown a conditional 
stability. A T-dependent upper bound on Ot/(Ox)2 seems to be required. The 
calculations reported here used bounds ranging from 2 to 5. Since the speed of 
convergence did not appear to be greatly affected by its choice, ‘p was taken to be 4. 

The computational effort required to produce a steady flow pattern depends 
most heavily on the flow pattern which initiates a calculation (that is, the specified 
initial conditions). Once one steady state was computed, others (corresponding to 
different T or Q or J) were obtained by calculating a succession of steady states 
corresponding to intermediate values of the parameters. 

Accuracy of the resulting approximations of the steady flow variables is depen- 
dent upon Q, the number of Fourier components retained, and upon J + 1, the 
number of mesh points in -0.5 < x < 0.5. Figures 2 and 3 show the dependence 
of certain global parameters 
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FIG. 2. Logarithms of root-mean-square radial averages of the mean velocity pert~ba~~o~ 
and various velocity harmonics for various radial mesh intervals (J-1) showing convergence 
as 9 grows; for calculations with T/TC = 1.29, Q = 2, R, = 2R, and Q, = 0. 

FIG. 3. Logarithms of root-mean-square radial averages of the mean velocity pe~t~~batio~ 
and various velocity harmonics for various truncations of the Fourier expansions; o for 
T/Te = 1.29, -!- for T/TO = 3.226; J = 40, R, = 2R, and Q, = 0. 
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of the flow upon Q and J (these calculations were performed with R, = 2 R, and 
Q2 = 0). These mdicate how few Fourier components are required ,to !produce 
apparent convergence. The comparison between the maximum Q used (namely, 6) 
and the maximum J (namely, 40) hints at the efficiency of the use of truncated 
expansions. All results reported in the next section have been obtained with J = 40 
and with Q = 6 for T > 1.29 Tc and with Q = 2 for T < 1.29 Tc . 

V. COMPUTED TAYLOR VORTICES 

The validation of the numerical technique in this application is possible only by 
checking internal consistencies (such as the decay of In Et and In Fi shown in Fig. 2) 
and by comparing computed and experimental data. 

The calculations to be discussed in this section were performed with R, = 2R1 
and Sz, = 0. By extrapolation to zero of the measures Eg and FQ of the harmonic 
content of the vortex flow, estimates of Tc may be made. However, since an extra- 
polation can be arranged to predict any number one might wish to report for Tc , 
we present only a graphic form of our data (Fig. 4), observing that all reasonable 
estimates will fall very close to 3099.6, the value predicted by linear stability 

T/T, 

FIG. 4. Root-mean-square radial averages of the mean velocity perturbation and various 
velocity harmonics versus T/To showing decay as TIT, -+ 1. 
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analysis (Davey [4]). An estimate is also possible from our torque data (Fig. 5), 
hereever our work has demanded a value for TC , JIOO. has been use 

FIG. 5. 

1.0 

TORQUE/COUETTE TORQUE 

Non-dimensioni torques per unit length versus T/T, ; o-present work ; EI onnefly 
and Simon ; x -Davey. 

An important comparison of theory and experiment is based on ca~c~atiQ~s of 
the torque per unit length on the inner cylinder. The torque G is given 

This becomes 

where G, = 2npvhR13Q,/d, when the quantities given in (2)-(5) a 
Since 6, carries the dimensions of G, G/GO is used hereafter as a 
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torque (G, is in fact a constant multiple of the Couette torque). We have used the 
second order difference estimate of av,,/ax at x = -+ given by 

dx-I(-lSv,(-4, t) + 20,(-h + dx, t) - 0.5v,(-4 + 2Llx, t)). 

Thus with E.L = 0, 7 = 0.5 we calculate 

G -= 
GO - ; + & (20, (- ; + Ax, t) - 0.5v, (- ; +~2dx, t))I. (14) 

Donnelly and Simon [9] developed an empirical torque relation (equation (22) 
of their paper) in which we replace Q, with the Reynolds number R = QIRld/v 
(using as appropriate to their data v = 0.1226 cm2/sec, p = 0.8404 gm/cm”, 
h = 5.0 cm) to obtain 

G/G, = -2158 R-2 + 1.452(0.1226 R)“.364. (15) 
Davey’s analysis (1962) led to an equivalent of 

G/Go = -5752 R-2 + 3.908. (16) 

Figure 5 shows curves for (15) and (16) and data based on (14). A numerical version 
is contained in table I. The close agreement near T/T, = 1 is to be expected. The 

TABLE I 

NONDIMENSIONAL TORQUE PER UNIT LENGTH (G/G,,) ON THE INNER 
CYLINDER FOR VARIOUS T/Tc AS GIVEN BY OUR CALCULATIONS AND 

THE RELATIONS GIVEN IN EQS. (14)-(16) 

WC Present work Davey Donnelly and Simon 

1.032 2.71 2.71 2.71 
1.129 2.81 2.81 2.80 
1.290 2.96 2.95 2.93 
1.613 3.20 3.14 3.14 
2.419 3.59 3.40 3.50 
3.226 3.85 3.52 3.75 
4.839 4.16 3.65 4.09 

divergent trend observable as T/T, increases may be due to the asymptotic nature 
of the analysis where Davey’s curve is concerned. The discrepancy between our 
computed G/G, and the experimental values is probably within the bounds of 
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experimental error and due to a combination of experimental and numerical errors. 
As a test of overall numerical effectiveness, torque comparisons are ~~sat~s~~ctory 
since they make use of only &,/ax and that only at x = -0.5. 

Recently, Snyder and Lambert [13] have reporte 
strain at the inner cylinder. They analyzed these 

ponents and made comparisons with the sa 
ey’s [4] tables. This rate of strain S is given by 

from which we derive 

+ (1 + p)(l - T”> 
2(q2 - p) TX2 

for the dimensionless S/A&. Using second-order differences for the 
S/Q1 was approximated for 5 spaced uniformly from 0 to 2 
truncated expansion C,“=, A, cos qh[ was interpolated. The 
make the same procedure feasible using the equation 

sin AS + ‘2 Ae2 -f$? sin 2Xj 
2 l/2 

Ii ! r=Ilild 

+ O(Aa3). (Davey’s notation). 

The quantity A, is proportional to (T - T,J1r2 and so is small for T near TC 
should emphasize that Davey’s analysis is expected to be as~m~toti~all~ valid 
as T+ TC and takes into account only two harmonics while the 
includes up to six harmonics. The results are shown in Fig. 6 and ta 

Snyder and Lambert [13] describe the strengthening with inGreasi 
of fluid moving radially outward between alternate vortex interfa 
characterized by increased radial velocity and narrowed axial channel as t 
of rotation of the inner cylinder is increased. Figure 7 shows radial velocity 
of a single vortex at x = 0. 



14 ROGERS AND BEARD 

TABLE II 

MEAN (A,,) AND HARMONICS (A, AND A,) OF THE RATE OF STRAIN AT THE INNER 
CYLINDER FOR VARIOUS T/To AS GIVEN BY PRESENT CALCULATXONS AND 

TERMS THROUGH SECOND ORDER OF DAVEY’S EXPANSION 

present Davey 

1.032 2.71 2.71 
1.129 2.83 2.86 
1.290 3.01 3.05 
1.613 3.28 3.31 
2.419 3.72 3.64 
3.226 3.99 3.83 
4.839 4.30 3.99 

present Davey 

-.197 -A84 
-.338 -.346 
-.452 - .469 
- .558 -.585 
-.660 -.692 
-.718 -.736 
- .766 -.773 

present Davey 

-.0219 - .0262 
- .0686 - .0934 
-.126 -.176 
-.207 -.280 
-.309 -.404 
-.359 - .462 
- .402 -.517 

I - 
-4 

10-l - 

10-2 
lo-2 10-I 

CT-;/G 
IO' IO2 

FIG. 6. Nondimensional harmonics A,, A,, A3, A4 of rate of strain at the inner cylinder 
versus (T/Tc) - 1; O-present work; X-Davey; shaded region-Snyder and Lambert experi- 
mental data. 
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FIG. 7. Axial profile of total radial velocity midway between cylinders, showing growth of 
jet with ,r/Tc . 

A parallel trend has been pointed out by Meyer 1121. This is the f~~rna~i~~ of 
shear layers in the circumferential flow, occurring at the same places as the jets. 
Clearly these are not independent developments, but Davey, DiPrima and Stuart 
151 give an argument suggesting that this circumferential shear is the ~ri~~i~ 
mechanism in the destabilization of Taylor vortices to a wavy vortex distur 
Figure 8 shows the ratio of the angular fluid velocity at x = 0 (midcell) to that of 
the inner cylinder as a function of i for various T/Te . Even though these calcula- 
tions do not represent conditions approaching those at which the Taylor vortices 
become unstable, an interesting development is revealed. As T/TC is increased, a 
velocity gradient develops, but not noticeably beyond T/TC = 1.413 (see Fig S>, 
Mowever, in the T/TC = 3.226 and 4.839 curves a growing reversal of curvature is 
discernable in the middle of the cells. This may be an early manifestation the 
core of fluid moving with fixed angular velocity inside each vortex which eyer 
found in his computation, 

VI. REMARKS 

A few comments about the numerical method are in order here. A~~Ia~~a~~ has 
been taken of a somewhat special situation. The fluid flow studied was known to be 
periodic in the C-direction and the flow was expected to be composed ~ri~~~~~~y 
of low order harmonics for T near TC . The latter expectation is crucial. It means 
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FIG. 8. Ratio of circumferential velocity to velocity f&R, of inner cylinder midway between 
cylinders. 

that the number Q of harmonics used in the numerical study for a given accuracy 
will be smaller than the number of axial mesh levels required in a pure differencing 
for comparable accuracy. Without such an expection the use of a truncated Fourier 
series has no advantage over a direct differencing of the dependent variables in all 
spatial directions. 

Conceivably, expansions in functions other than the trigonometric might be 
profitably used when they can be seen to have a natural association with the problem 
under study. These functions might occur as eigenfunctions of a related boundary 
value problem, for instance. 
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APPENDIX 

The nonlinear terms appearing in equations (7) an 

es-%- DD*(u~D*u~-~) - -??-- 
Aj - 9) 

art + q2iPll”(ujui-,) - q2h2 x (z$t&,) + Y-& q’~‘uj 
1 

The operators P and M contain differentiations allay in the ~orn~i~~t~~~s D 
and (DB*j2. Using D”c = (-1)” k! ek+l, we note 

(DL>*)f = D”f + .$Df - t”f 
an 
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The difference operators p and A?Z are constructed by replacing the differentiation 
operators D, D2, D3, D4 by the difference operators defined by 

Oft-4 + .dx) - (-fi-1 + fj+3/2h, 

Pf(-B + "w - (fj-I - 2fj + fj+1W2, 
Pf(-4 + .@d - (-fi-2 + 2f,-1 - 2fj+, + fj+zWW, 
D4f(-9 +jh) - (f+2 - 4f,-1 + 6fj - 4f,+l + fj+zW4. 

The treatment of D and D * in the nonlinear terms is the same. However, differentia- 
tion of products of the dependent variables occur there. We have elected to expand 
the differentiations according to the product rule until D, D2, D3 apply only to 
single dependent variables. For instance, 

DD*(fP*g>> = WfWd + W?fXD2d + fD3g + t%Pfls + WfWd 
+ 2f D2g1 - t2U?fk + 2f &I 

occurs in U, with f = z+ , g = u,-~ . The simple difference formulas given above 
are substituted. 
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